Modern Quality Assurance: How to do customer service QA the right way
Make agent QA both effective and efficient by blending AI and human expertise.
The Quality Assurance Process To keep track of, and improve, customer experience at the contact centre, the management of contact quality, consistency, and outcomes is critical. The QA (Quality Assurance) process is designed to ensure that agents are dealing with customers in line with the operating guidelines and brand tone of the company, and is…
To keep track of, and improve, customer experience at the contact centre, the management of contact quality, consistency, and outcomes is critical. The QA (Quality Assurance) process is designed to ensure that agents are dealing with customers in line with the operating guidelines and brand tone of the company, and is used as part of training and continuous improvement efforts in contact centres.
QA is most often carried out through a regular assessment of randomly selected customer interactions for each agent. This review process is carried out monthly by a team supervisor or dedicated QA team, and interactions are scored across multiple metrics that capture adherence to protocol, friendliness, efficiency, etc. There has been a move away from “speed” metrics such as handling times to manage agent performance, with contact centres now focussing more on customer satisfaction and contact quality.
According to this 2017 study from NICE, QA reviews operate, most often, with monthly reviews of approximately 7 interactions per agent (on the order of 1% of interactions).
The greatest challenge for comprehensive QA review is a shortage of time and resources. While performance and quality is high on contact centre’s priority list, the process is manual, time consuming, and requires highly trained staff. Listening to 100% of calls, or reading 100% of chat transcripts is clearly an impossible task, and random selection of interactions for review can easily miss important information or points for improvement. Very often, results are recorded in Excel or Google Sheets in smaller centres for analysis, but digital scorecards with centralised reporting are becoming increasingly common.
Artificial intelligence (AI) and machine learning can vastly improve the coverage of analysis efforts for QA processes at the contact centre. Often falling under the umbrella term of “interaction analytics” or “conversational analytics”, AI systems can analyse every contact, providing contact centre administrators a much higher level of visibility across agent activities.
Many of the technologies mentioned in this series, including text classification, sentiment analysis, and other NLP techniques can be used to help with QA processes and applied across both text-based communications and phone conversations (using speech-to-text transcriptions).
AI systems can help the QA process in multiple ways, for example:
As real-time and post-contact interaction analysis tools become widely employed, the QA process is poised to become more efficient and more personalised for each agent. Ultimately, these improvements will allow 100% coverage of interactions in a cost-effective manner, driving increases in customer satisfaction as well as overall efficiency.
Implementing an AI system in your agent review process will not remove the requirement for detailed analysis from team leaders, or for 1:1 meetings between agents. However, a well-implemented system can help review meetings become much more effective and customised to individual agent’s and team performance.
Make agent QA both effective and efficient by blending AI and human expertise.
With our data-driven QA review process, there’s no more wasting time manually sifting through agent conversations.
Here at EdgeTier, we've just reached a milestone on the EdgeTier system. We are introducing our first Generative AI feature
"It has reduced the time for the quality assurance process as it provides clear data and a very robust direction on where to look and what matters the most."
"I specifically liked the flexibility. I liked the can-do attitude. I always felt supported. There hasn’t been any single point in our journey where EdgeTier has said no."
"We now have highly detailed understanding of agent performance, not just on key agent metrics, but also on how customers react to our agents and the emotions of our customers feel when talking to our team."
Let us help your company go from reactive to proactive customer support.
Unlock AI Insights